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Abstract. We investigate the possibility to constrain the pion distribution amplitude from the γ∗γ∗ →
π transition. For a surprisingly large range in the two photon virtualities we find that the transition
form factor is essentially independent of the distribution amplitude. This in turn entails a parameter-free
prediction of QCD. The γ∗γ∗ → η, η′ form factors are also briefly discussed. We estimate that experimental
studies might be feasible at the existing e+e− experiments BaBar, Belle, and CLEO.

1 Introduction

One of the simplest exclusive observables is the form fac-
tor FPγ(∗) for transitions from a real or virtual photon
to a pseudoscalar meson P . Its behavior at large momen-
tum transfer is determined by the expansion of a product
of two electromagnetic currents about light-like distances
[1]. The form factor then factorizes into a hard scatter-
ing amplitude, which is known including the first-order
perturbative QCD corrections [2,3], and a soft matrix ele-
ment, parameterized by a process independent meson dis-
tribution amplitude Φ(ξ).

For space-like momentum transfer the form factors
FPγ(∗) can be accessed in e+e− → e+e−P . The measure-
ment by CLEO [4] for quasi-real photons and P = π, η,
η′ has renewed the interest in these quantities, and many
papers have been devoted to their theoretical analysis, e.g.
[5]– [13], to name a few. The CLEO data are consistent
with distribution amplitudes of the pion, the η, and the
η′ which are rather close to the asymptotic form,

ΦAS(ξ) =
3
2
(1 − ξ2), (1)

where ξ = 2x− 1, and x is the usual momentum fraction
carried by the quark inside the meson.

The purpose of the present article is to investigate the
information contained in the form factors for γ∗γ∗ → P
transitions, beyond what we have already learned from
the real-photon case. In Sect. 2 we cast the leading twist,
next-to-leading order result for the γ∗γ∗ → π form factor
in a form useful for the purpose of our study. In Sect. 3
we attempt a critical appraisal of what we can and what
we cannot deduce from the existing data on the transition
γ∗γ → π. The following two sections explore the γ∗–π
transition form factor in two different kinematical regimes.
In Sect. 6 we briefly point out the specifics of the transi-
tions to η and η′ mesons. Estimates of cross sections at the

running experiments BaBar, Belle, and CLEO are given
in Sect. 7, and we conclude in Sect. 8. Some technical de-
tails concerning the αs corrections to Fπγ∗ are given in an
appendix.

2 The γ∗–π transition
form factor to leading twist

Let us begin with the discussion of the γ∗γ∗ → π form
factor. The γ∗γ∗π vertex is parameterized by

Γµν = −ie2 Fπγ∗(Q,ω) εµναβ q
αq′β , (2)

where we use the convention ε0123 = 1. Here q and q′
respectively denote the photon momenta corresponding to
the Lorentz indices µ and ν. We introduce the spacelike
photon virtualities Q2 = −q2, Q′2 = −q′2, as well as

Q2 =
1
2
(Q2 +Q′2), ω =

Q2 −Q′2

Q2 +Q′2 . (3)

The values of ω range from −1 to 1, but due to Bose
symmetry the transition form factor is symmetric in this
variable: Fπγ∗(Q,ω) = Fπγ∗(Q,−ω).

To leading-twist accuracy, i.e., in the collinear approx-
imation and using only the valence Fock state of the pion,
the transition form factor Fπγ∗ reads [2,3]

Fπγ∗(Q,ω) =
fπ

3
√
2Q2

∫ 1

−1
dξ
Φπ(ξ, µF )
1 − ξ2ω2

×
[
1 +

αs(µR)
π

K(ω, ξ,Q/µF )
]
. (4)

The Feynman graphs contributing to leading order (LO)
are shown in Fig. 1, and the next-to leading order (NLO)
kernel K(ω, ξ,Q/µF ) in the MS scheme is given in the
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Fig. 1. Lowest order Feynman graph for the γ∗γ(∗) → π tran-
sition. A second graph is obtained by interchanging the photon
vertices

appendix. µF and µR respectively denote the factorization
and renormalization scales, both to be taken of order Q,
and fπ ≈ 131MeV is the well-known pion decay constant.
Φπ is the pion distribution amplitude, which we expand
upon Gegenbauer polynomials C3/2

n (ξ), the eigenfunctions
of the leading-order evolution kernel for mesons [1],

Φπ(ξ, µF ) = ΦAS(ξ)

[
1 +

∞∑
n=2,4,...

Bn(µF )C3/2
n (ξ)

]
. (5)

The Gegenbauer coefficients are scale dependent, to LO
they evolve according to

Bn(µF ) = Bn(µ0)
(
αs(µF )
αs(µ0)

)γn/β0

, (6)

where µ0 is the starting scale of evolution and β0 = 11 −
2nf/3. The anomalous dimensions γn are positive num-
bers increasing with n, so that for lnµF → ∞ any distri-
bution amplitude evolves into ΦAS with higher order terms
in (5) gradually becoming suppressed. Hence, the limiting
behavior of the transition form factor for real photons is

Fπγ(Q,ω = ±1) −→ fπ√
2Q2

, (7)

which is a parameter-free QCD prediction once fπ is
known. Note, however, that this limit is only approached
logarithmically, and that the anomalous dimensions are
not very large at small n. For nf = 4 flavors one has
γ2/β0 = 2/3, γ4/β0 ≈ 0.97, γ6/β0 ≈ 1.17. As n becomes
large the γn grow logarithmically, γn ∼ 16

3 ln(n+1) being
a good approximation already for n = 2.

To NLO accuracy, the C3/2
n (ξ) are no longer eigen-

functions of the evolution, so that their coefficients do no
evolve independently. Namely, Bn(µF ) at µF > µ0 de-
pends on all coefficients B2(µ0), . . . , Bn(µ0). NLO evo-
lution resums logarithms α2

s log(µF /µ0), compared with
αs log(µF /µ0) in LO evolution, and its effects will be more
important when one evolves over a large interval in µF or
when αs at the starting scale µ0 is large.

Using the Gegenbauer expansion (5), the integral in
(4) can be worked out analytically order by order in n,
provided that µR is chosen to be independent of ξ. This
results in

Fπγ∗(Q,ω) =
fπ√
2Q2

×
[
c0(ω, µR) +

∑
n=2,4,...

cn(ω, µR, Q/µF )Bn(µF )

]
, (8)

where the lowest-order coefficients cn read

c0 =
1
ω2

[
1 − (1 − ω2)

artanhω
ω

]
− αs(µR)

π

× 1
9ω2

[
15 − (1 − ω2) (15 + 4 artanh2ω)

artanhω
ω

]
,

c2 =
1

2ω4

[
15 − 13ω2 − (5 − 6ω2 + ω4)

3 artanhω
ω

]

+
αs(µR)
π

K2(ω,Q/µF ),

c4 =
1

8ω6

[
315 − 420ω2 + 113ω4

− (21 − 35ω2 + 15ω4 − ω6)
15 artanhω

ω

]

+
αs(µR)
π

K4(ω,Q/µF ). (9)

The analytical expressions of the αs corrections K2 and
K4 are rather lengthy and we refrain from showing them
explicitly. Their dependence on ln(Q/µF ) is partially com-
pensated in Fπγ∗(Q,ω) by the µF dependence of the
Bn(µF ). Notice that no such compensation takes place
for the µR dependence to the order in αs we are working
in. Unless stated otherwise we will in the following take
µF = µR = Q, which is the virtuality of the quark propa-
gators in Fig. 1 at ξ = 0. The coefficients cn then depend
weakly on Q via αs(Q). Other scale choices lead, as usual,
to results differing by terms of O(α2

s), which is beyond the
accuracy of our analysis. We finally remark that for fixed
ω the Fπγ∗ form factor only falls off like Q−2 at large Q,
in contrast to the Q−2Q′−2 ∝ Q−4 behavior of the vector
meson dominance model [14].

In order to visualize the sensitivity of the form fac-
tor to the Gegenbauer coefficients we plot the lowest co-
efficients cn(ω) in Fig. 2. Here and in the following we
use the two-loop expression of αs for nf = 4 flavors and
Λ

(4)
MS

= 305MeV [15]. We see a surprising behavior of the
coefficients in ω. In the real-photon limit ω → 1 the form
factor is sensitive to all Gegenbauer moments with approx-
imately equal weight, cn(ω = 1) ≈ 1. As soon however as
one departs from this limit, the coefficients cn(ω) decrease
and become ordered as c0 > c2 > c4 > . . . . Except for c0
this decrease is rather fast. If ω < 0.8, for instance, the
second coefficient c2 is less than 40% of c0. For a wide
range of ω, the form factor is essentially independent of the
Bn, unless they are unexpectedly large. The discussion of
what can be learned from the measurement of Fπγ∗ natu-
rally falls into two parts, concerning the kinematic regions
Q′2 � Q2 and Q′2 ∼ Q2, respectively.
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Fig. 2. The coefficients cn(ω) in the expansion (8) of the γ∗–π transition form factor. NLO corrections are included with
µF = µR = Q, which is taken as 2 GeV

3 The real-photon limit

Before embarking on the study of Fπγ∗ let us discuss some
issues in the analysis of the real-photon limit. At ω = 1
one has

cn(ω = 1) = 1 +
αs(µR)
π

Kn(ω = 1, Q/µF ) , (10)

where the first few coefficients explicitly read

K0 = −5
3
, K2 =

5
3

(
59
72

− 5
6
ln

2Q2

µ2
F

)
,

K4 =
5
3

(
10487
4500

− 91
75

ln
2Q2

µ2
F

)
. (11)

The γ–π transition form factor thus approximately probes
the sum 1 +

∑
nBn of Gegenbauer coefficients. Due to

evolution and the running of αs the relative weights of
the Bn(µ0) in Fπγ vary with Q, but only logarithmically.
Extracting information on the Gegenbauer coefficients be-
yond their sum hence requires analyzing the form factor
in a sufficiently large range of Q, say Qmin ≤ Q ≤ Qmax.
While Qmax is usually set by the available data, the choice
of Qmin is an important source of theoretical uncertainty,
since at lower Q power corrections to the leading twist
result can become increasingly important. There are var-
ious approaches to describe such power corrections, all of
which involve further assumptions or parameters.

A different source of uncertainty is that in practice
analyses of Fπγ data are performed with a truncation of
the Gegenbauer series, setting all Bn = 0 for n ≥ n0 with
some n0. This may be seen as an analog to the determina-
tion of parton distributions, where one typically chooses
a functional form of the parton distributions at the start-
ing scale of evolution and then fits its parameters to data
on inclusive processes. Notice that setting Bn to zero for
all values of µF is strictly speaking not consistent with
NLO evolution, which generates nonzero Bn(µF ) even if
Bn(µ0) = 0. Müller [16] has shown that this can lead

to important effects on the shape of the distribution am-
plitude, especially in the endpoint regions and when αs

at the starting scale is large. In the analysis [7] of the
CLEO data, the impact of NLO evolution on the quantity
Fπγ was however found to be small compared with the
NLO corrections to the hard scattering kernel. In the nu-
merical studies of the present work we will be concerned
with values of µF = Q between 1 and 2 GeV. We choose
µ0 = 1GeV as the starting scale of evolution and take the
LO formula (6), using however the two-loop expression of
αs. Since the purpose of this paper is not a precise de-
termination of Φπ, this should be sufficiently accurate. At
the same time it keeps the analysis procedure simple as
it allows us to work with a finite number of Gegenbauer
coefficients at all scales.

The simplest analyses of the Fπγ data assume n0 = 4.
This leads to stable results on B2, although its value is
subject to the uncertainties just discussed. Thus, for in-
stance, [7] obtained the value B2(µ0 = 1GeV) = −0.15±
0.04 to NLO accuracy in the MS scheme, using µF = µR =
Q and Q2

min = 3GeV2. Changing to µF = µR = Q as we
prefer here, one finds B2(µ0 = 1GeV) = −0.06 ± 0.03
for both Q2

min = 2GeV2 and 3GeV2 within errors. This
shift in the value of B2 may be taken as an indication of
the uncertainties due to uncalculated higher orders in the
perturbative expansion. Melić et al. [13] have calculated
the part of the O(α2

s) corrections that allows one to de-
termine the BLM scale for Fπγ . Taking the distribution
amplitude ΦAS they find µR ≈ Q/3 in the MS scheme.
The corresponding NLO prediction for Fπγ is slightly be-
low the CLEO data, in contrast to the one for ΦAS and
µR = Q, which is slightly above. Brodsky et al. [11] find
consistency with the CLEO data when taking ΦAS and a
yet lower renormalization scale together with a prescrip-
tion for the saturation of αs, thus including effects beyond
a leading twist perturbative analysis.

If one allows for B2 and B4 in the analysis there is no
unique result for the individual coefficients. Rather there
is a linear correlation between B2 and B4, which using (6),
(8), (11) one can approximate as
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Fig. 3. 1σ and 2σ χ2-contour plots for a two parameter fit to the CLEO data on Fπγ choosing Q2
min = 2GeV2 (left) and

3GeV2 (right). Values of the Gegenbauer coefficients B2 and B4 refer to a factorization scale of µ0 = 1GeV. The data is fitted
to the leading twist NLO expression (4) with µF = µR = Q/

√
2. The χ2 is calculated from the errors on the data and does not

include a theory error

f(Q) = B2(µ0) +
(
1 +

αs(µR)
π

(K4 − K2)
)

×
(
αs(µF )
αs(µ0)

)(γ4−γ2)/β0

B4(µ0) + O(α2
s)

≈ B2(µ0) +
(
1 + 0.66αs(Q)

) (
αs(Q)
αs(µ0)

)0.3

B4(µ0)

+ O(α2
s), (12)

where we have taken µF = µR = Q and nf = 4 when
going from the first to the second line. The function f(Q)
includes the data on Fπγ and the term with c0 in (8).
It may also absorb possible power corrections as far as
they are independent of Φπ. Only the mild logarithmic
Q dependence due to evolution and the running of αs

restricts the allowed values of B2 and B4 to a finite region
in parameter space. The factor multiplying B4(µ0) in (12)
varies between 1.31 and 1.05 forQ2 between 1 and 4GeV2,
the latter corresponding to the center of the highest Q2

bin in the CLEO measurement.
The experimental errors of the form factor data allow

deviations from the linear correlation (12). This correla-
tion is nicely illustrated by the χ2-contour plots in Fig. 3,
generated by MINUIT for our leading-twist NLO analysis.
Comparison of the plots reveals that for Q2

min = 3GeV2

the allowed parameter regions are enlarged since both the
number of data points included in the fit and the lever
arm in Q are smaller. On the other hand, power correc-
tions should be less important in this case. We also ob-
serve from the figure that the 1σ range for B2 and B4
obtained from the fit with Q2

min = 2GeV2 is embedded in
that for Q2

min = 3GeV2, indicating that the fits are con-
sistent with each other. Within the experimental errors,
logarithmic effects suffice to describe the residual Q2 de-
pendence of the CLEO data for Q2Fπγ(Q2) above 2GeV2.

We emphasize that this finding does not prove that power
corrections are indeed small in that region, it rather illus-
trates the difficulty to distinguish a power from a loga-
rithmic behavior in Q2 with data in the range between 2
and 8GeV2.

From the above exercise we conclude that only extreme
values of |B2| and |B4|, say above 1 or 2, are ruled out if
higher order Gegenbauer coefficients are neglected. A com-
pact way of presenting the result of the fit with two free
coefficients is to use the linear combinations B2 +B4 and
B2 − B4, which have approximately uncorrelated errors.
Taking Q2

min = 2GeV2 we obtain B2+B4 = −0.06±0.08
and B2 − B4 = 0.0 ± 0.9 at µ0 = 1GeV. This illustrates
that, within a leading twist NLO analysis, the CLEO data
on the γ∗γ → π form factor is insufficient for an unam-
biguous determination of the pion distribution amplitude,
rather it approximately fixes the sum

∑
nBn to be close

to zero. We cannot decide from the existing data on Fπγ

whether the small value of the sum
∑

nBn results from the
cancellation of rather large individual terms or from the
smallness of the Bn themselves. Additional information
from processes where Φπ enters in a different way, would
be highly welcome to settle this issue. One candidate are
the decays of charmonium states into pion pairs, where
however the quality of the data as well as unsuppressed
color octet contributions [17] do not permit a conclusive
analysis at present. Many theoretical studies have been
devoted to the elastic pion form factor, cf. e.g. [11,18–21],
but data at large Q2 is scarce. A different way to probe the
pion wave function is provided by diffractive dissociation
of a pion into jets [22]. It is however not clear at present
to which precision information on Φπ can be obtained in
that process [23].

We will investigate below what data on the γ∗–π tran-
sition form factor could contribute, but before this we
should discuss the question of theoretical uncertainties
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in Fπγ . The χ2-contours in Fig. 3 only reflect the errors
on the form factor data. We have already mentioned the
uncertainty from the choice of factorization and renor-
malization scales. Much harder to estimate is the role of
power corrections. Contributions from various dynamical
sources have been studied in the literature, such as higher
twist distribution amplitudes [24,25], the nonperturbative
behavior of αs(µ) in the infrared region [11,19], or trans-
verse momentum effects in the hard scattering subprocess
[5,7,10].

At this point we wish to comment on the analysis of
the CLEO data presented in [26]. Power corrections due
to the hadronic component of the photon have been mod-
eled there within QCD sum rules. The relative weights of
B2(µ0) and B4(µ0) in Fπγ then display a much stronger
Q2 dependence than in the leading twist case (12), which
leads to a much smaller allowed parameter region than in
our Fig. 3. A large part of the deviation between the Fπγ

data and the result obtained with ΦAS in that analysis
is due to the inclusion of twist-four distribution ampli-
tudes. Their shape is taken to be the asymptotic one, and
for their normalization results from QCD sum rule cal-
culations as given in [24] are used. No error is however
assigned to this input in the analysis. Note that an uncer-
tainty of about ±30% has been estimated for the relevant
normalization constant δ2 in [27]. Given this and the fact
that only certain power corrections are taken into account
in the QCD sum rule technique, we feel that the errors
on the extracted Gegenbauer coefficients given in [26] are
subject to a significant model dependence.

Several of the analyses cited above find moderate but
non-negligible power corrections to Fπγ in the Q2 range
where most of the CLEO data is concentrated. We find
that our limited ability to reliably describe, let alone to
calculate power corrections precludes us from drawing firm
quantitative conclusions and from discriminating between
many of the available theory predictions for Φπ. The best
remedy to this situation we can see is data on Fπγ at the
highest possible Q2. Given the luminosity of the presently
running experiments BaBar, Belle and CLEO, a substan-
tial improvement should be possible over the statistics of
the available data [4], which is based on an integrated lu-
minosity of about 3 fb−1.

Notice that the range of theory predictions on Φπ is
considerable. For instance, the QCD sum rule analysis
of Braun and Filyanov [28] gave B2(1 GeV) = 0.44 and
B4(1 GeV) = 0.25 under the assumption that higher order
coefficients are negligible. On the other side, a still prelim-
inary result from lattice QCD [29] gives B2 = −0.41±0.06
at a low scale. Between these extremes many studies, using
e.g. light-cone QCD sum rules with non-local condensates
[30], the transverse lattice [31], or the instanton model of
QCD [32] obtain a distribution amplitude either slightly
broader or slightly narrower than ΦAS.

4 The region Q′2 � Q2

With the lessons from the real-photon limit in mind let
us now investigate the region where one of the photons

is slightly off-shell. In order to gain some insight in the
importance of power corrections we estimate transverse
momentum effects by employing the modified perturbative
approach [33,20]. It has been applied to the case of γ∗–π
transitions in [5,7], and to the case at hand in [6]. In this
approach the expression (4) is replaced by

Fπγ∗(Q,ω) =
1

4
√
3π2

∫
dξ d2b Ψ̂∗

π(ξ,−b, µF )

×K0(
√
1 + ξω Q b) exp

[−S (
ξ, b,Q, µR

)]
, (13)

whereK0 is the modified Bessel function of order zero, rep-
resenting the Fourier transform of the leading-order hard
scattering amplitude in momentum space. The quark-anti-
quark separation b is canonically conjugated to the usual
transverse momentum k⊥. The Sudakov exponent S de-
scribes gluonic radiative corrections not taken into ac-
count in the evolution of the wave function. For lnQ→ ∞
it suppresses all contributions to the integral except for
those with small quark-antiquark separations. As a con-
sequence the limiting behavior (7) emerges for γ–π tran-
sitions, as we have checked numerically by calculating ex-
pression (13) up to Q2 = 1015 GeV2. As b sets the in-
terface between non-perturbative soft gluons contained in
the hadronic wave function and perturbative soft gluon
contributions resummed in the Sudakov factor, the factor-
ization scale µF is taken as 1/b. For the renormalization
scale we take the prescription µR = max {1/b,√1 + ξω Q,√
1 − ξω Q} of [20]. Following [34,21] we take for the light-

cone wave function in b-space the simple form

Ψ̂π(ξ,b) =
2πfπ√

6
ΦAS(ξ) exp

[
−π

2f2
π

2
(1 − ξ2) b2

]
(14)

in our estimate. Evaluation of the γ∗γ → π form factor in
the modified perturbative approach using this wave func-
tion leads to very good agreement with the CLEO data
[7].

In the kinematical range of interest here we find that
the Sudakov factor only provides corrections of no more
than 1.5% to Fπγ∗ , and it is thus good enough to retain
only the leading logarithmic terms in S as given in [33].
In our kinematics the difference between the asymptotic
result (7) and the expression (13) is thus essentially due to
the k⊥-corrections to the hard scattering amplitude and
not to the perturbative corrections contained in the Su-
dakov factor. In order to estimate the importance of power
corrections we therefore compare (13) with the leading
twist result at LO rather than at NLO in αs. In Fig. 4 we
show the ratio between the form factor evaluated from (14)
in the modified perturbative approach and the LO result
calculated with ΦAS in the leading-twist approximation.
As we can see, the corrections are below 10% for values of
Q2 = 4GeV2, but can go up to 30% for Q2 = 1GeV2. As
expected, the importance of power corrections decreases as
both photons become virtual. This is already signaled by
the leading twist result. Indeed, the factor 1/(1− ξ2ω2) in
the convolution (4) controls to which extent Fπγ∗ is sensi-
tive to contributions from the end-point regions ξ → ±1,
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1GeV2 (dash-dotted line). Here we have used the wave func-
tion (14) in the modified perturbative approach and the asymp-
totic pion distribution amplitude in the leading twist calcula-
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where the quark or antiquark in the pion becomes slow
and soft effects can become important.

Let us explore how much information on the pion dis-
tribution amplitude can be obtained from the ω depen-
dence of Fπγ∗ under these circumstances. To this end, we
plot in Fig. 5 the form factor for different choices of dis-
tribution amplitudes. These have been chosen to give the
same value of

∑
nBn � −0.06 at the scale µ0 = 1GeV, so

that up to small corrections they all give the same value
of Fπγ in the NLO leading-twist analysis. We see that
for Gegenbauer coefficients whose order of magnitude is
not implausibly large compared to the theory estimates
we have quoted above, one can obtain visible differences
in the form factor. In part of the ω range they can at-
tain 15% and are thus marginally above the level where
we have estimated that at Q2 = 4GeV2 power correc-
tions can make a reliable extraction of the Bn problematic.
While one clearly has not enough discriminating power to
pin down individual coefficients Bn, one can gain valid in-
formation beyond what can be inferred from real-photon
data. Notably, one can check whether the small value of
the sum

∑
nBn, to which Fπγ is mainly sensitive, results

from the cancellation of rather large individual terms or
from the smallness of the Bn themselves. This type of
evidence would be rather complementary to the quanti-
tatively more precise information we have argued to be
accessible from high Q2 data on Fπγ .

5 The region Q′2 ∼ Q2

As we have seen in Fig. 2, the contribution from Gegen-
bauer coefficients Bn to Fπγ∗ becomes small as one goes
away from ω = 1, with a faster rate of decrease for increas-
ing index n. To understand this, we observe that the hard
scattering kernel in (4) can be Taylor expanded around
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Fig. 5. The scaled form factor Q2Fπγ∗(Q, ω) calculated to
NLO in the leading-twist approximation at Q2 = 4GeV2, us-
ing sample distribution amplitudes. The values of the Gegen-
bauer coefficients are quoted at the scale µ0 = 1GeV. The
curves are evaluated from B2 = −0.06 (solid line), from
B2 = −0.45, B4 = 0.39 (dashed line) and from B2 = 0.54,
B4 = −0.40 and B6 = −0.20 (dash-dotted line). All higher
order Gegenbauer coefficients are taken to be zero

ω = 0. Using the Gegenbauer expansion (5) of Φπ(ξ), we
find the relevant integral to be∫ 1

−1
dξ

1 − ξ2
1 − ξ2ω2

[
1 +

∞∑
n=2,4,...

Bn C
3/2
n (ξ)

]
(15)

=
∞∑

m=0,2,...

ωm

∫ 1

−1
dξ (1 − ξ2) ξm

+
∞∑

n=2,4,...
m=n,n+2,...

ωmBn

∫ 1

−1
dξ (1 − ξ2) ξmC3/2

n (ξ)

for the LO contribution to Fπγ∗ . The condition m ≥ n in
the sum involving the Bn incorporates the orthogonality
of Gegenbauer polynomials, as the ξ integrals for m < n
are zero. We thus have the remarkable result that in the
limit ω → 0 a Gegenbauer coefficient Bn is suppressed in
Fπγ∗ by a power ωn. This also holds to NLO, as we will
show in the appendix, and explains the behavior of the
coefficients cn in Fig. 2. Keeping only terms up to O(ω2),
we have

Fπγ∗(Q,ω) =
√
2fπ

3Q2

[
1 − αs

π
+

1
5
ω2

(
1 − 5

3
αs

π

)

+
12
35
ω2B2(µF )

(
1 +

5
12
αs

π

{
1 − 10

3
ln
Q2

µ2
F

})]

+ O(ω4, α2
s) . (16)

The limiting behavior for ω → 0 and to leading order in
αs has been derived long ago in [35]. The αs-correction to
the leading term,

Fπγ∗(Q,ω) =
√
2fπ

3Q2

[
1 − αs

π

]
+ O(ω2, α2

s) (17)



M. Diehl et al.: The annihilation of virtual photons into pseudoscalar mesons 445

0 0.2 0.4 0.6 0.8 1
ω

0.05

0.06

0.07

0.08

0.09

0.1

Q
2  F

π
γ∗
(Q

2 ,ω
) 

[G
eV

]
_

_

Fig. 6. Comparison of a NLO leading twist calculation of the
scaled form factor Q2Fπγ∗(Q, ω) (solid line) with the approx-
imations (16) (dashed line) and (17) (dash-dotted line). The
form factor is evaluated with µF = µR = Q at Q = 2GeV for
a sample distribution amplitude with B2 = 0.54, B4 = −0.40,
B6 = −0.20, and Bn = 0 for n ≥ 8. Note the suppressed zero
on the y axis

has already been given in [2].
Given the small numerical coefficients in front of ω2,

the ω independent term in (16) dominates over a rather
large range of ω. Even at ω � 0.6 the ω2 corrections
amount to less than 15% if |B2| < 0.5. Since higher coeffi-
cients Bn are suppressed even more strongly, we conclude
that in this range of ω the γ∗–π transition form factor is
essentially flat in ω and independent of the pion distribu-
tion amplitude Φπ. To illustrate the quality of the small-ω
approximations we compare in Fig. 6 the full result (4) for
Fπγ∗ with the expressions (16) and (17) at Q = 2GeV
for a sample distribution amplitude given by B2 = 0.54,
B4 = −0.40, B6 = −0.20 at µ0 = 1GeV. The full cal-
culation is in agreement with the CLEO data for ω → 1.
We see that, although B2 in our example is quite large
and positive, both approximations are indeed very good
for ω � 0.6.

We thus have a parameter-free prediction of QCD to
leading-twist accuracy, which well deserves experimental
verification. Any observed deviation from (17) beyond
what can reasonably be ascribed to O(α2

s) terms would be
an unambiguous signal for power corrections. Only if the
lowest Gegenbauer coefficients Bn were extremely large
would this conclusion become invalidated, but as we dis-
cussed in the previous section, such a scenario could al-
ready be ruled out using the region ω � 1. We remark
that according to our estimate in Sect. 4, power correc-
tions need not be negligibly small at moderate values of
Q, even for ω = 0.

For small ω, the relation (17) has a status compara-
ble to the famous expression of the cross section ratio
R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−). An impor-
tant difference is however that the hard scale in R is time-
like and requires one to stay out of the resonance mass re-
gion. In contrast, Fπγ∗ involves spacelike virtualities and

thus offers the possibility to explore the quality of a lead-
ing twist approximation down to moderate values of the
hard scale. In that respect it is similar to a number of
sum rules in inclusive deep inelastic scattering. The fact
that (17) should hold in a wide region of ω raises hope for
experimental feasibility of this prediction.

One may ponder on whether at large Q2 the form fac-
tor Fπγ∗ has the potential for a determination of αs. Our
arguments in the appendix suggest that the suppression
of Bn by ωn holds to all orders in perturbation theory.
Higher orders αs coefficients in (17) for Φπ = ΦAS have
been obtained in [12] using the conformal operator prod-
uct expansion. Given phenomenological or theoretical in-
put on Bn, the ωn terms could at least be estimated, as
could be the size of power corrections. Experimentally, the
measurement of Fπγ∗ should be quite clean. We will how-
ever see that truly large Q2 are not attainable at present
facilities because of rather small cross sections.

6 The γ∗–η and γ∗–η′ transition form factors

Let us now discuss the γ∗–P transition form factors for
P = η, η′. For the valence Fock states of the mesons we
choose a basis with the SU(3)F singlet |qq (1)〉 = |uu +
dd+ ss〉/√3 and octet |qq (8)〉 = |uu+ dd− 2ss〉/√6, and
the two-gluon state |gg〉. This has the advantage that the
corresponding distribution amplitudes Φ(1)

P and Φ(g)
P mix

under evolution, but Φ(8)
P evolves independently. The so-

lution of the LO evolution equation for the octet distri-
bution amplitude is given by (5) with Gegenbauer coeffi-
cients B(8)

Pn, whereas for the quark singlet and gluon one
can write [36]

Φ
(1)
P (ξ, µF ) = ΦAS(ξ)

[
1 +

∞∑
n=2,4,...

B
(1)
Pn C

3/2
n (ξ)

]
,

Φ
(g)
P (ξ, µF ) =

(1 − ξ2)2
16

∞∑
n=2,4,...

B
(g)
Pn C

5/2
n−1(ξ), (18)

with

B
(1)
Pn(µF ) = B

(+)
Pn (µF ) +B

(−)
Pn (µF ),

B
(g)
Pn(µF ) = a

(+)
n B

(+)
Pn (µF ) + a

(−)
n B

(−)
Pn (µF ), (19)

where the B(±)
Pn evolve as in (6) with positive anomalous

dimensions γ(±)
n . We remark in passing that conflicting

results on γ(±)
n and a(±)

n are found in the literature [36].
Notice that the two-gluon distribution amplitude vanishes
in the asymptotic limit lnµF → ∞. It contributes to FPγ∗

only to order αs through the box graph shown in Fig. 7.
The corresponding hard scattering amplitude can be ob-
tained by crossing from the NLO corrections to the Comp-
ton amplitude γ∗p → γ∗p, which can be found in [37].

In full analogy to the case of the π we can write the γ∗–
P transition form factor as a superposition of Gegenbauer
coefficients with ω dependent weights. In the limit ω → 1
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Fig. 7. Sample NLO Feynman graphs for
the γ∗γ(∗) → P transition

one probes essentially the sums
∑

nB
(8)
Pn and

∑
nB

(1)
Pn of

coefficients appearing in the quark distribution amplitudes
Φ

(8)
P and Φ(1)

P . The real-photon limit has been analysed in
[5,8,38]. Using the measurements of CLEO [4] and L3 [39],
it was found in [38] that within experimental accuracy
the data on Fηγ and Fη′γ is compatible with the asymp-
totic forms of the quark distribution amplitudes and cor-
respondingly vanishing gluon ones.

When ω moves away from 1 the form factors become
increasingly less sensitive to the higher order coefficients.
As in the case of quarks, we find that the Gegenbauer
coefficient B(g)

Pn or the gluon distribution amplitude first
appears at order ωn, despite the fact that Φ(g)

P is expanded
upon Gegenbauer polynomials C5/2

n−1 instead of C3/2
n . In

analogy to (17) we then obtain the prediction

FPγ∗(Q,ω) =
√
2 f eff

P

3Q2

[
1 − αs

π

]
+ O(ω2, α2

s) . (20)

The effective (process-dependent) decay constants are

f eff
P =

f
(8)
P + 2

√
2f (1)

P√
3

, (21)

where

〈0 | J (i)
5 µ | P (p)〉 = if (i)

P pµ, (i = 1, 8) (22)

are matrix elements of the SU(3)F singlet or octet axial
vector currents.

The decomposition of the mesons states |η〉 and |η′〉 on
|qq (1)〉, |qq (8)〉, |gg〉 and higher Fock states is completely
general. It does not refer to η−η′ mixing, which is known
to occur empirically, and which relates the respective Fock
state coefficients for the two mesons. In [40,41] a quark-
flavor mixing scheme has been proposed, which success-
fully describes many physical processes. In this scheme
the physical mesons are obtained from two basis states,
|ηq〉 and |ηs〉 by a unitary transformation with a mixing
angle ϕ. The quark valence Fock states of |ηq〉 and |ηs〉 re-
spectively are |uu+ dd〉/√2 and |ss〉. This mixing scheme
can be justified to the extent that the distribution ampli-
tudes are close to the asymptotic form; evolution does then
practically not spoil this scheme. The decay constants (22)
are given here by the mixing angle and the two basic de-
cay constants, fq and fs. For the effective decay constants
above one then finds [40]

f eff
η =

5fq cosϕ− √
2fs sinϕ

3
,

f eff
η′ =

5fq sinϕ+
√
2fs cosϕ

3
. (23)

The phenomenological values of the mixing parameters
derived in [40] numerically give f eff

η = 0.98fπ and f eff
η′ =

1.62fπ. Similar results are obtained with the large Nc val-
ues of the f (i)

P [42]. At small ω and large enough Q2 the
ratio of the γ∗– η and γ∗– η′ form factors constitutes an ac-
curate measure of the effective decay constants. This can
be used for a severe test of the η − η′ mixing scheme. As
in the pion case, substantial deviations from the small-ω
predictions (20) only occur if there are unexpectedly large
power corrections or extremely large Gegenbauer coeffi-
cients.

One may extend our analysis to the gluonic transitions
g∗g∗ → η, η′ in the same fashion as we discussed the elec-
tromagnetic ones. The case of the η′ has recently been
investigated by Ali and Parkhomenko [43], and we can
follow their analysis closely. For ω → 1 the form factors
not only depend on the Gegenbauer coefficients B(1,8)

P,n but

are also sensitive to variations of the B(g)
Pn, since in con-

trast to the electromagnetic case both quark and gluon
distribution amplitudes now contribute to LO in αs. On
the other hand, we can still apply our arguments for the
suppression of the Gegenbauer coefficients (and hence of
the full contribution from Φ

(g)
P ) in the limit ω → 0. We

find for the transition form factors

FPg∗(Q,ω) = −4παs

3Q2
CP + O(ω2, α2

s) (24)

with effective decay constants

Cη =
√
2fq cosϕ− fs sinϕ ≈ 0.32fπ ,

Cη′ =
√
2 fq sinϕ+ fs cosϕ ≈ 1.99fπ . (25)

The ratio of the two form factors at small ω is given by
Cη/Cη′ = − tan θ1 which, if measurable, would give access
to the badly constrained η − η′ mixing parameter θ1 [41].
This mixing angle determines the relative decay strength
of the η and η′ through a weak SU(3)F singlet current.
Present estimates of the angle θ1 range from −2◦ to −10◦
[41].

7 Cross section estimates

In order to assess the possibilities of the running exper-
iments BaBar, Belle, and CLEO to investigate Fπγ∗ we
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Table 1. Minimal and maximal values of polar angles in the
laboratory frame imposed by our cuts, as explained in the text.
We also give the beam energies for the different experiments.
Angles refer to the positron beam axis and are given in mrad,
energies are given in GeV

Ee+ Ee− αmin π − αmax ϑmin π − ϑmax

BaBar 3.1 9.0 478 284 667 275
Belle 3.5 8.0 154 112 524 294
CLEO 5.3 5.3 227 227 314 314

will now estimate cross sections and see how they are af-
fected by acceptance cuts. We first remark that at large
Q2 the cross section for e+e− → e+e− π0 depends on the
two photon virtualities roughly like

dσ

dQ2 dQ′2 ∼ 1
Q2Q′2 (Q2 +Q′2)2

, (26)

where the factors Q2 and Q′2 are due to the photon flux,
and (Q2 +Q′2)2 comes from the behavior of Fπγ∗ , which
as we have seen behaves like 1/(Q2+Q′2) with only a mild
dependence on ω.

For acceptance cuts we will consider two scenarios. One
is that both scattered leptons and the π0 are seen in the
detector. In kinematics where this is not possible because
either Q2 or Q′2 is too small to ensure a sufficiently large
lepton scattering angle, one may envisage the detection
only of one lepton and the π0. If experimental resolution
permits, the four-momentum of the undetected lepton can
then be reconstructed using four-momentum conservation.

We define polar angles with respect to the direction of
the positron beam, and take the convention that Q2 corre-
sponds to the photon radiated from the e+. As typical cuts
we impose for tagged leptons a minimum energy of 1 GeV
and transverse momentum of 100 MeV, and a minimum
transverse momentum of 200 MeV for the pion. We further
demand that a tagged e+ has a polar angle αe+ > αmin
in the detector. Likewise, we require αe− < αmax for a
tagged e−, and ϑmin < ϑπ < ϑmax for the polar angle ϑπ

of the pion. For the minimal and maximal angles we take
the values given in Table 1. To estimate Fγ∗π we use the
leading-twist NLO expression (4), taking for simplicity the
asymptotic form ΦAS of the pion distribution amplitude.

It turns out that the cuts with the most serious im-
pact are the angular restrictions on the scattered leptons,
while the precise values of the other cuts have only a mild
influence. We show in Fig. 8 the differential e+e− cross
section in the region Q2 ∼ Q′2. For Belle and CLEO we
have imposed detection cuts for both scattered leptons.
One clearly sees how for larger |ω|, where at fixed Q2 one
of the photon virtualities becomes small, our cuts do have
visible effects. Imposing the same cuts for BaBar leaves
essentially no cross section in the kinematical region we
are considering. This is due to the limited forward and
backward coverage of the BaBar detector: for photon vir-
tualities large enough to bring the scattered lepton within
detector acceptance, the cross section is already minute
because of its strong decrease (26) with Q2 and Q′2. The

same holds if we allow the e+ to be undetected. Only in
the case where the e− is untagged do we obtain a signal,
not shown in Fig. 8.

In Fig. 9 we show the differential cross section in the
region of ω close to 1, requiring only the scattered e+
and the π0 to be observed. If instead we require the e−
and π0 to be detected in the region of ω close to −1,
we obtain somewhat smaller cross sections in the case of
Belle. For BaBar we have little change at Q2 = 4GeV2

but almost no signal left at Q2 = 2GeV2. For CLEO with
its symmetric geometry, there is of course no difference
between the two cases.

We have also investigated the production of an η or
η′, imposing the same cuts as described for the pion case.
The corresponding cross sections scale approximately like
the squared transition form factors FPγ∗ , i.e., the mass
differences between the π, η, and η′ have only little ef-
fect on kinematics and phase space in the region we are
investigating.

Concerning the values of cross section estimated here,
we recall the benchmark luminosity of 30 fb−1 per year
of the B factories. With the numbers in Fig. 8 and 9 we
conclude that for Q2 around 2 GeV2 studies should be
possible, both when ω is around zero and when |ω| ≈ 1. As
Q2 goes up to 4 GeV2 and more, event statistics will be-
come increasingly problematic, so that, unfortunately, we
do not expect precision measurements to feasible in that
region with the current experimental setups. Such stud-
ies would greatly benefit from high-luminosity upgrades
of the B-factories.

We remark that our rate estimates here are restricted
to |ω| ≤ 1− 10−3 and thus do not include the real-photon
limit. There the cross section will be much higher and, as
emphasized at the end of Sect. 3, measurements with good
statistics should be possible at higher values of Q2.

8 Summary

We have investigated the γ∗–π transition form factor to
leading-twist accuracy including αs corrections. The chief
purpose of our analysis is to assess what can be learned
about the pion distribution amplitude from experimental
data on Fπγ∗ .

Our main idea is to use the expansion of Φπ on Gegen-
bauer polynomials, and to write Fπγ∗ as a double series
in the Gegenbauer coefficients Bn and in powers of the
variable ω, which describes the difference of the two pho-
ton virtualities. We find that, contrary to what one may
expect, it is very difficult to obtain information on the Bn

beyond what can be inferred from the case where one of
the photons is quasi-real, which essentially constrains the
sum of Gegenbauer coefficients. Only for ω values close
to but less than 1 can one get more information. Effects
on Fπγ∗ of the order of 10% to 15% can be obtained us-
ing coefficients whose magnitude is not implausibly large
compared to theory estimates. Data in that range of ω
can, for instance, allow a check whether the small value
of the sum

∑
nBn, extracted from the CLEO real-photon

data, results from cancellations of rather large individual
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Fig. 8. The differential cross section for e+e− → e+e−π as a function of ω for Q2 = 2GeV2 (left) and Q2 = 4GeV2 (right).
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Fig. 9. The differential cross section near ω = 1 for Q2 = 2GeV2 (left) and Q2 = 4GeV2 (right). Corresponding curves with
cuts for Belle are between those for BaBar and for CLEO. In this region, the behavior (26) becomes dσ/(d log[1−ω] dQ2) ∼ Q−6

terms or from the smallness of the Bn themselves. This
type of information would be a valuable input into other
phenomenological studies of Φπ.

One of our main findings is that a Gegenbauer coeffi-
cient Bn in Φπ contributes to Fπγ∗ with a weight propor-
tional to ωn. For a large range of ω, in fact for ω � 0.6, we
find that the form factor is independent of the Gegenbauer
coefficients to a high degree of accuracy. Although this is
bad news for a determination of Φπ, it entails a parameter
free QCD prediction of the γ∗γ∗ → π form factor. Any
clear deviation from this result observed in experiment
would be an unambiguous signal for power corrections,
provided that the lowest Gegenbauer coefficients Bn are
not extremely large, a scenario which could be ruled out
using the region ω � 1. In a wide region of ω around zero,
data on Fπγ∗ would thus permit one to test the quality
of leading twist QCD in the spacelike region, in a similar
fashion as sum rules in deep inelastic scattering.

Analogous results hold for the γ∗γ∗ → η and γ∗γ∗ →
η′ form factors. Note that here the gluon distribution am-
plitudes contribute indirectly through mixing in the evolu-
tion and directly to order αs. Their contribution is further

suppressed for small ω. Data on Fηγ∗ and Fη′γ∗ in that
region could rather cleanly determine of a linear combi-
nation of the flavor singlet and octet decay constants of
these mesons, and thus give valuable information on η–η′
mixing.

Cross section estimates of the process e+e− → e+e−π0

at the running experiments BaBar, Belle, and CLEO in-
dicate that it should be possible, although challenging, to
measure the transition form factors for virtual photons
up to about Q2 � 4GeV2. Limiting factors for these mea-
surements are luminosity and the acceptance for lepton
detection in the forward and backward regions of the de-
tector. Measurements with better statistics and at higher
Q2 might be feasible at high-luminosity upgrades of the
present B-factories.

Concerning the real-photon limit, we argue that al-
though the present data on FPγ favor a small value for the
sum

∑
nBn, more precise statements can only be made at

the price of theory assumptions on the nature and size of
power corrections to the leading-twist result. High statis-
tics measurements at large virtualities Q2 would greatly
alleviate this problem and should be feasible at BaBar,
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Belle, and CLEO. They should be worthwhile, since the
pseudoscalar meson distribution amplitudes are funda-
mental quantities describing meson structure and provid-
ing benchmark tests for nonperturbative methods in QCD.
They are also an input required for the calculation of
several phenomenologically important processes in hard-
scattering approaches. An example are exclusive nonlep-
tonic B meson decays into pseudoscalars, where a good
understanding of the strong interaction dynamics would
enhance the prospects of extracting information on CP
violation.
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Appendix

The NLO hard scattering kernel in (4), evaluated in the
MS scheme, reads

K =
1
6

[
(1 + ξω) ln(1 − ξω) + 4(1 − ω) ln(1 − ω)

+ (1 + ξω) ln2(1 − ξω) − (1 − ω) ln2(1 − ω)

− 9(1 + ξω)
]

+
1
6
ln
Q2

µ2
F

[
2(1 + ξω) ln(1 − ξω)

− 2(1 − ω) ln(1 − ω) + 3(1 + ξω)
]

+
1

6ω2(1 − ξ2)
[
2(1 + ξω)(1 + ξω − 2ω2) ln(1 − ξω)

− 2(1 + ω)(1 + ω − 2ω2) ln(1 − ω)

− (1 + ξω)(1 − ω2) ln2(1 − ξω)

+ (1 + ω)(1 − ω2) ln2(1 − ω)
]

− 1 − ω2

3ω2(1 − ξ2) ln
Q2

µ2
F

[
(1 + ξω) ln(1 − ξω)

− (1 + ω) ln(1 − ω)
]

+ {ω → −ω} . (27)

We will now show that the relevant convolution in the
NLO part of Fπγ∗ can be written as∫ 1

−1
dξ

1 − ξ2
1 − ξ2ω2 K(ω, ξ)

[
1 +

∞∑
n=2,4,...

Bn C
3/2
n (ξ)

]
(28)

=
∞∑

m=0,2,...

ωm

∫ 1

−1
dξ (1 − ξ2) pm(ξ)

+
∞∑

n=2,4,...
m=n,n+2,...

ωmBn

∫ 1

−1
dξ (1 − ξ2) pm(ξ)C3/2

n (ξ) ,

where the pm(ξ) are polynomials in ξ of order m. Due
to the orthogonality of the C3/2

n (ξ) the sum involving the
Bn is here again restricted to m ≥ n. To show (28) it
is enough to establish that K(ω, ξ) can be expanded in a
double Taylor series

∞∑
m=0

m∑
l=0

dm−l,l ω
2mξ2l =

∞∑
k,l=0

dk,l ω
2k(ωξ)2l , (29)

i.e., that K is analytic in the two variables ω2 and ω2ξ2 at
ω2 = ω2ξ2 = 0. One readily sees that K is even in ω and
ξ, which is a consequence of Bose symmetry and charge
conjugation invariance. Further inspection of (27) shows
that we can write

K = f(ω2, ω2ξ2) +
g(ω2, ω2ξ2)
ω2 − ω2ξ2

(30)

where f and g are analytic in their variables around ω2 =
ω2ξ2 = 0. Hence g is also analytic in ω2 and ω2 − ω2ξ2.
Finally one can see from (27) that g is zero for ξ = 1. The
apparent pole at ω2 − ω2ξ2 = 0 thus cancels in (30), and
g/(ω2 −ω2ξ2) also has the required analyticity properties.

It is not surprising that K is analytic in the pair of vari-
ables ω and ωξ. Apart from the appropriate subtraction of
collinear singularities, the NLO hard scattering kernel is
the amplitude for the partonic subprocess γ∗(q)+γ∗(q′) →
q(k) + q̄(k′) in the collinear limit, i.e., at (k + k′)2 = 0.
From the relations q′2 = −Q2(1 − ω) and (q′ − k′)2 =
−Q2(1− ωξ) we see that for Q2 > 0 analyticity in ω and
ωξ around ω = ωξ = 0 is equivalent to analyticity in the
spacelike invariants q′2 and (q′ − k′)2. This suggests that
our result (15) will generalize to higher orders in αs, pro-
vided appropriate analyticity properties of the collinear
subtraction terms in the hard scattering kernel.
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